海洋实验室在仿生自适性可粘附电子皮肤方面取得进展
自然界的生物为人们提供了增强界面粘附的方法和思路。其中,藤壶等海洋生物在寻找到合适的寄生物体后,会分泌低交联程度的蛋白质粘液以润湿拓扑表面,随后经过几个小时的固化过程,粘液完全凝结成凝胶状层从而增强了粘附作用。这种有趣且巧妙的界面粘附现象激发研究者们开发了一种简单、高效的方法制造出粘性、超薄、导电和可拉伸的多功能传感膜。
近期,中国科学院宁波材料技术与工程研究所海洋实验室智能高分子材料团队陈涛研究员、肖鹏副研究员基于在碳基/高分子复合薄膜的构筑及其柔性传感器方面的研究基础(Chem. Mater., 2016, 28, 7125; ACS Nano, 2019, 13, 4368; Nano Energy, 2019, 59, 422; Nature Commun., 2020, 11, 4359; Nano Energy, 2021, 81, 105617; Adv. Funct. Mater., 2021, 31, 2105323, Nano-Micro Lett.,2022, 14, 32,Nano-Micro Lett.,2022, 14, 62,Adv. Funct. Mater., 2022, 32, 2201812),受藤壶分泌粘液后凝结以增强界面粘附的启发,与宁波市第一医院魏鹏教授合作,开发了一种具有增强粘附力的仿生界面诱导的共形Janus膜,用于柔性多功能电子产品。
该工作采用界面自组装方法,首先在水/空气界面实现了碳纳米管(CNTs)/Ecoflex弹性体复合薄膜的构筑。与藤壶寄生表面的粘附过程一致,界面上的碳纳米管/弹性体复合膜经历了两步固化过程,其中高柔顺性部分固化的Janus膜可以容易地转移到平面或非平面的目标表面上,以便最终完全固化并提高附着力。所得导电薄膜在各种拓扑的表面上表现出增强的粘附性能和良好的柔顺性能。基于以上特征集成的应变传感器不仅能以稳定和连续的方式检测传统的单向弯曲变形,而且可以有效地捕捉和区分由共形特征介导的反向微小变形。更重要的是,优于传统的应变传感器,该应变传感器通过导电层之间的可控接触机制,可以高度适应分层的纸面进行动态折纸监测。此外,受皮肤表面具有复杂皱纹的象鼻的启发,该传感薄膜可以共形地贴附在人工象鼻表面,对象鼻运动实现实时监测并精细区分象鼻的运动方向。
该工作以题为“Bioinspired Interface-Guided Conformal Janus Membranes with Enhanced Adhesion for Flexible Multifunctional Electronics”的论文发表在Chem. Mater., 2022, DOI: 10.1021/acs.chemmater.2c01008。该研究得到了国家自然科学基金(52073295)、浙江之江实验室开放研究项目(No.2022MG0AB01),国家自然科学基金委中德交流项目(M-0424)、中科院前沿科学重点研究项目(QYZDB-SSWSLH036)、王宽诚国际交叉团队(GJTD-2019-13)、浙江省医药卫生科技项目(2021KY279)及宁波公益技术研究(202002N3182)等项目的资助。
藤壶粘液启发的粘附增强的共形传感薄膜及柔性多功能电子
(海洋实验室)